Priestley Duality, a Sahlqvist Theorem and a Goldblatt-Thomason Theorem for Positive Modal Logic

نویسندگان

  • Sergio A. Celani
  • Ramon Jansana
چکیده

In [12] the study of Positive Modal Logic (PML) is initiated using standard Kripke semantics and the positive modal algebras (a class of bounded distributive lattices with modal operators) are introduced. The minimum system of Positive Modal Logic is the (∧,∨, 2, 3,⊥,>)-fragment of the local consequence relation defined by the class of all Kripke models. It can be axiomatized by a sequent calculus and extensions of it can be obtained by adding sequents as new axioms. In [6] a new semantics for PML is proposed to overcome some frame incompleteness problems discussed in [12]. The frames of this semantics consists of a set of indexes, a quasi-order on them and an accessibility relation. The models are obtained by using increasing valuations relatively to the quasiorder of the frame. This semantics is coherent with the dual structures obtained by developing the Priestley duality for positive modal algebras, one of the topics or the present paper, and can be seen also as arising from the Kripke semantics for a suitable intuitionistic modal logic. The present paper is devoted to the study of the mentioned duality as well as to proving some d-persistency results as well as a Sahlqvist Theorem for sequents and the semantics proposed in [6]. Also a GoldblattThomason theorem that characterizes the elementary classes of frames of that semantics that are definable by sets of sequents is proved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonic Modal Logics

Monotonic modal logics form a generalisation of normal modal logics in which the additivity of the diamond modality has been weakened to monotonicity: 3p∨3q → 3(p∨q). This generalisation means that Kripke structures no longer form an adequate semantics. Instead monotonic modal logics are interpreted over monotonic neighbourhood structures, that is, neighbourhood structures where the neighbourho...

متن کامل

Goldblatt-Thomason-style Theorems for Graded Modal Language

We prove two main Goldblatt-Thomason-style Theorems for graded modal language in Kripke semantics: full Goldblatt-Thomason Theorem for elementary classes and relative Goldblatt-Thomason Theorem within the class of finite transitive frames. Two different semantic views on GML allow us to prove these results: neighborhood semantics and graph semantics. By neighborhood semantic view, we can define...

متن کامل

The Importance of Being Discrete

The paper discusses discrete frames as an attractive semantics for modal logic. We study questions of completeness, persistence, duality and definability. Notions of completeness, strong global completeness and complexity of dual varieties coincide for discrete frames; moreover, they are equivalent to conservativity of minimal hybrid extensions. The paper also provides some criteria of di-persi...

متن کامل

Goldblatt-Thomason Theorem for Coalgebraic Graded Modal Logic

Graded modal logic (GML) was originally presented by Kit Fine (1972) to make the modal analogue to counting quantifiers explicit. A graded modal formula ♦k is true at a state w in a Kripke model if there are at least k successor states of w where φ is true. One open problem in GML is to show a Goldblatt-Thomason theorem for it. See M. De Rijke’s notes (2000). Recently, Katsuhiko Sano and Minghu...

متن کامل

Modal languages for topology: Expressivity and definability

In this paper we study the expressive power and definability for (extended) modal languages interpreted on topological spaces. We provide topological analogues of the van Benthem characterization theorem and the Goldblatt-Thomason definability theorem in terms of the well established first-order topological language Lt.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Logic Journal of the IGPL

دوره 7  شماره 

صفحات  -

تاریخ انتشار 1999